

TL;DR

- Predicting generalization performance under distribution shifts is challenging
- Most methods use logits without dealing with miscalibration cases
- We propose MANO, a theoretically grounded estimation approach
- It automatically takes into account miscalibration scenarios
- It can be applied to ResNets, ConvNext, and ViT architectures
- Benefits: SOTA, efficient, architecture agnostic, robust

Problem Setup

Goal: given a pre-trained model f, predict its performance on a test set $\mathcal{D}_{\text{test}}$.

- Input: a pre-trained model f and test data $\mathcal{D}_{ ext{test}}$.
- Distribution shift: $p_S
 eq p_T$ where training data $\sim p_S$ and test data $\sim p_T$.
- Output: an estimation score $\mathcal{S}(f, \mathcal{D}_{test})$ that linearly correlates the true accuracy.

This is a challenging task often occurring in real-world scenarios.

Motivation

Question 1: Why are logits informative of generalization performance? **Question 2:** How to alleviate the overconfidence issues of logits-based methods?

NeurIPS 2024, Vancouver, Canada

MaNo Section Matrix Norm for Unsupervised Accuracy Estimation **Ambroise Odonnat^{*23}**

Renchunzi Xie*1

Logits Reflect Distances to Decision Boundaries

- Decision boundary of class k is the hyperplane $\{\mathbf{z}' \in \mathbb{R}^q \mid \boldsymbol{\omega}_k^\top \boldsymbol{z}' = 0\}$,
- Distance from a point z this hyperplane is $d(\boldsymbol{\omega}_k, \mathbf{z}) = |\boldsymbol{\omega}_k^\top \boldsymbol{z}| / \|\boldsymbol{\omega}_k\|$,
- Logits reflects decision to decision boundary as $|\mathbf{q}_k| = |\boldsymbol{\omega}_k^\top \mathbf{z}| \propto d(\boldsymbol{\omega}_k, \mathbf{z})$,
- Low-density assumption: misclassified samples are closer to decision boundaries.

Logits (in absolute values) positively correlated to generalization performance.

Experimental Results: Better, Faster, Stronger

- Comparison between MANO and its competitors with metrics ρ and R^2 ,
- Comparison across several architectures: ResNets, ConvNext, ViT,
- Extensive evaluation with common benchmarks on various distribution shifts.

Shift	MaNo	COT	MDE	Nuclear	Dispersion	ProjNorm
	-	2024	2024	2023	2023	2022
Synthetic	0.991	0.988	0.947	0.982	0.960	0.971
Subpopulation	0.983	0.962	0.920	0.973	0.909	0.897
Natural	0.905	0.871	0.436	0.455	0.410	0.382
Overall improv	ement	2%	$\mathbf{25\%}$	6 %	26 %	28 %

MANO outperforms all the baselines while being training-free.

Main References

Renchunzi Xie

Ambroise Odonnat

Vasilii Feofanov

 \mathcal{T} -similarity • **Deng et al.** - ICML 2023 Nuclear

• Odonnat et al. - AISTATS 2023

• Xie et al. -NeurIPS 2024 (this work) MANO

<u>Vasilii Feofanov</u>^{*2} Weijian Deng⁴ Jianfeng Zhang² Bo An¹

^{*}Equal contribution 1 NTU 2 Huawei Noah's Ark Lab 3 Inria 4 ANU

MANO: A Simple Three-Step Recipe

- Input: Pre-trained model f, test dataset $\mathcal{D}_{\text{test}} = \{\mathbf{x}_i\}_{i=1}^N$.
- Inference: Recover logits $\mathbf{q}_i = f(\mathbf{x}_i)$,
- *Criterion*: $\Phi(\mathcal{D}_{test}) = KL(uniform||softmax proba)$

1)
$$v(\mathbf{q}_i) = \begin{cases} 1 + \mathbf{q}_i + \frac{\mathbf{q}_i^2}{2}, & \text{if } \Phi(\mathcal{D}_{\text{test}}) \leq \eta \\ \exp(\mathbf{q}_i), & \text{if } \Phi(\mathcal{D}_{\text{test}}) > \eta \end{cases}$$

2) $\sigma(\mathbf{q}_i) = \frac{v(\mathbf{q}_i)}{\sum_{k=1}^{K} v(\mathbf{q}_i)_k} \in \Delta_K$
3) $\mathcal{S}(f, \mathcal{D}_{\text{test}}) = \frac{1}{\sqrt[p]{NK}} \|\mathbf{Q}\|_p = \left(\frac{1}{NK} \sum_{i=1}^{N} \sum_{k=1}^{K} |\sigma(\mathbf{q}_i)_k|^p\right)^{\frac{1}{p}}$

MANO is simple yet efficient and we prove that it captures the model's uncertainty.

Entity-18 (Subpopulation Shift): MANO linearly correlates with the ground-truth test.

Challenging Setting: Natural Shift

Australian National

University

- Natural shift: most difficult and most realistic benchmarks.
- The normalization we proposed corrects the issues with softmax's overconfidence.
- MANO significantly outperforms other baseline methods.

Dataset	Model	Conf	Score	Nuclear		MaNo	
	Model	R^2	ho	R^2	ho	R^2	ho
PACS	ResNet18	0.594	0.755	0.609	0.874	0.827	0.909
	ResNet50	0.070	0.069	0.611	0.888	0.923	0.958
	WRN-50-2	0.646	0.678	0.607	0.867	0.924	0.972
	Average	0.437	0.501	0.609	0.876	0.891	0.946
Office-Home	ResNet18	0.795	0.909	0.692	0.783	0.926	0.930
	ResNet50	0.769	0.895	0.731	0.895	0.838	0.916
	WRN-50-2	0.741	0.874	0.766	0.874	0.800	0.895
	Average	0.768	0.892	0.730	0.850	0.854	0.913
DomainNet	ResNet18	0.670	0.736	0.758	0.789	0.902	0.937
	ResNet50	0.570	0.706	0.809	0.879	0.910	0.950
	WRN-50-2	0.774	0.874	0.850	0.911	0.893	0.978
	Average	0.671	0.722	0.805	0.895	0.899	0.949
RR1-WILDS	ResNet18	0.951	1.000	0.885	1.000	0.983	1.000
	ResNet50	0.918	1.000	0.906	1.000	0.978	1.000
	WRN-50-2	0.941	1.000	0.840	1.000	0.969	1.000
	Average	0.937	1.000	0.877	1.000	0.977	1.000

MANO significantly outperforms competitors under natural shift.

Robustness Analysis

We conducted large-scale experiments and ablations on all the distribution shifts.

Overall, MANO leads to the best and most robust estimations!

We tested our approach's efficiency and versatility with 3 SOTA architectures.

MANO is the best approach to use with **SOTA architectures!**

Take Home Message

Predicting generalization performance under distribution shifts is challenging. \rightarrow Start using MANO for an **efficient** and **accurate** estimation!

Want to Know More?

