

Leveraging Ensemble Diversity for Robust Self-Training

Ambroise Odonnat¹²³, **Vasilii Feofanov**¹, **Ievgen Redko**¹ ¹Huawei Noah's Ark Lab, ²École des Ponts ParisTech, ³ENS Paris-Saclay

école———
normale
supérieure —
paris-saclay

Contributions

- *T*-similarity, a **calibrated** confidence measure built upon a **diverse** ensemble of **linear** classifiers.
- Analysis of ensemble's **convergence and diversity**.
- **Robust** self-training under **distribution shift**.

Self-Training

Training data: Labeled set $(\mathbf{X}_l, \mathbf{y}_l)$, unlabeled set \mathbf{X}_u .

- 1. Train base classifier h on $(\mathbf{X}_l, \mathbf{y}_\ell)$,
- 2. Predict labels and confidence score on \mathbf{X}_u ,
- 3. Pseudo-label most confident data and add them to \mathbf{X}_{ℓ} , 4. Repeat until $\mathbf{X}_u = \emptyset$.

Learning with the $\mathcal{T}\text{-similarity}$

Diverse classifiers **disagree a lot** on samples in *unsafe* regions and have a **strong agreement** inside *safe* regions.

We train an ensemble \mathcal{T} to **fit the labeled set** while being **diverse on the unlabeled set** by minimizing

Experiments

- ERM is supervised learning with the labeled set.
- $PL_{\theta=0.8}$ is self-training with a fixed threshold. $\theta=0.8$

Diversity and Calibration

Self-training will fail if the confidence measure is biased, which can occur under distribution shifts.

where the agreement is quantified by the \mathcal{T} -similarity

$$s_{\mathcal{T}}(\mathbf{x}) = \frac{1}{M(M-1)} \sum_{m \neq k} h_m(\mathbf{x})^{\top} h_k(\mathbf{x}).$$

Practical Implementation

- Projection layers learned via the prediction head.
- Learning ${\mathcal T}$ without influencing the representation.
- Ensemble ${\mathcal T}$ of 5 linear heads.

<mark>(a)</mark> IID

 \mathcal{T} -similarity corrects the softmax overconfidence and gives high confidence only to accurate predictions.

Sample Selection Bias (SSB)

- **IID**: usual labeling that verifies the i.i.d. assumption.
- SSB: model shift btw. labeled and unlabeled data.

 $\mathbb{P}(\text{ to label } \mathbf{x} \mid y = c) \propto \exp(r \times |\operatorname{PCA}_1(\mathbf{x})|).$

Failure of Self-Training with Softmax

Classifier is biased toward the labeled set under SSB.
Softmax gives high scores even to wrong predictions.

We obtain a lightweight implementation suitable to any SSL method with neural networks as backbones.

Theoretical Analysis

- Binary classification with an ensemble of linear heads.
- $\ell_{
 m sup}$ is the least-square loss with Tikhonov regularization.
- ullet Gradient descent finds stationary points of $\mathcal L$, i.e., $\mathcal T$ s.t.

 $\nabla \mathcal{L}(\mathcal{T}) = 0.$

Findings

- Finding stationary points is a **linear** problem in \mathcal{T} .
- Under mild assumptions, \mathcal{L} has a **unique minimizer**.

0	T	2	0	Ŧ	~	0	Ξ.	2
Div	ersity Streng	gth	Dive	rsity Stren	gth	Dive	ersity Strer	ngth

-- Softmax -- T-similarity

Increasing the diversity of the ensemble of classifiers improves the calibration of predicted probabilities.

Robust Self-Training under SSB

Dataset	ERM	$PL_{\theta=0.8}$			
		softmax	\mathcal{T} -similarity		
Cod-RNA	74.51 ± 8.86	74.75 ± 8.14	80.06 ± 3.55		
HAR	82.57 ± 1.96	82.87 ± 3.02	83.12 ± 2.27		
Mnist	50.74 ± 2.25	51.08 ± 2.55	52.69 ± 2.42		
Mushrooms	69.45 ± 7.29	59.53 ± 10.46	71.36 ± 6.63		
Phishing	67.42 ± 3.55	66.08 ± 5.66	77.41 ± 3.93		
Protein	57.57 ± 6.33	57.45 ± 6.36	57.61 ± 6.23		
Rice	79.19 ± 5.12	80.54 ± 4.31	81.1 ± 4.28		
Splice	66.13 ± 4.47	67.14 ± 2.62	67.45 ± 2.53		
Svmguide1	70.89 ± 10.98	70.35 ± 11.74	81.07 ± 5.39		

The \mathcal{T} -similarity is better than softmax and can enable self-training to go from degradation to improvement.

- High diversity when classifiers cover the directions of **large variance** in the labeled data.
- High diversity when labeled data cover the input space evenly \rightarrow motivation for **contrastive learning**.

Main References

Challenges

- 1. Reliable confidence estimation is fundamental,
- 2. The widely-used softmax cannot be trusted,

AISTATS 2024, Valencia, Spain

- 3. The solution must have a **lightspeed** computation.
- **Quionero-Candela et al.** MIT Press 2009 Dataset Shift in Machine Learning
- Zhang and Zhou DMKD 2013

Exploiting unlabeled data to enhance ensemble diversity

• Odonnat et al. - AISTATS 2024 (this work)

Leveraging Ensemble Diversity for Robust Self-Training

Take Home Message

Confidence estimation should be made with care in semi-supervised settings under distribution shifts. \rightarrow Start using our \mathcal{T} -similarity to avoid trouble!

Want to Know More?

ambroiseodonnattechnologie@gmail.com