QBIN Scientific Day, Université de Sherbrooke, June 2nd, 2022

Automatic detection of epileptic spikes on EEG and MEG

Karthik Enamundram^{1,5}, Sylvain Baillet³, Roy W. Dudley⁶, Julien Cohen-Adad^{1,5,7} ¹NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, ²Nevronas Inc., ³McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, ⁴Département de génie logiciel et des technologies de l'information, École de technologie supérieure, CIFAR, ⁵Mila - Quebec Al Institute, ⁶Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, ⁷Functional Neuroimaging Unit, CRIUGM, Université de Montréal.

Context

Spikes \rightarrow epilepsy diagnosis signature

EEG/MEG \rightarrow noisy & long recordings

Manual analysis \rightarrow time consuming & tedious

\rightarrow We propose an AI-powered pipeline to automatically detect epileptic spikes

<u>Ambroise Odonnat¹, Konstantinos Nasiotis², Eleanor Hill³, Samira Ebrahimi Kahou^{4,5}, Theo Gnassounou¹, Jiayue Zheng³, Naga</u>

Standardized Critical Care EEG Terminology: 2021 Version" Journal of Clinical Neurophysiology vol. 38 p. 1-29 (January 2021)

Methods

Results

Average metrics with a Leave-One-Out Cross-validation on 10 subjects

Method	Type of signal	F1 score	Precision	Sensitivity
Proposed method (code)	multi-channel EEG	0.38 ± 0.20	0.58 ± 0.20	0.33 ± 0.20
3D-UNet (code)	multi-channel EEG	0.19 ± 0.11	0.43 ± 0.11	0.16 ± 0.12

Conclusion

- \rightarrow High heterogeneity of subjects hurts the performances
- \rightarrow Robustness of the model must be improved
- \rightarrow Agnostic to the number of electrodes
- \rightarrow Automated and open-source framework (available in Brainstorm)

Supplementary Materials

Database

Data description

Number of patients	Sample frequency (Hz)	Trial duration (ms)	Number of trials	Number of tria containing spik
10	100	2000	2746	1373

Epileptic spike annotations

Number of spike annotations	Number of non spike annotations	Time window duration (ms)	Number of time windows	Number of tin windows containing spik
2331	549615	200	27460	2299

Methods: Architecture

Code available here.

Transformer architecture presented in the next slide. Input below is an EEG trial of 2 seconds with 50 channels.

Deep Learning Architecture

POLYTECHNIQUE Montréal

Université de Montréal W McGill de Montréal W NIVERSITY

Methods: Transformer Architecture

Transformer \rightarrow depth = 3

POLYTECHNIQUE NIVERSITÉ UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ

Results

Challenging training strategy: Leave-One-Out Cross-Validation

done on the 9 remaining ones Inference is thus done on a subject the model has never seen

High heterogeneity of subjects concerning epileptic spikes \rightarrow High variability of performances across the subjects → Proposed method lacks generalization capacity

- Each of the 10 subjects is chosen as test set while the training is

 - Discussion

Acknowledgements

Study design and supervision

Julien Cohen-Adad and the Neuropoly Team (<u>https://neuro.polymtl.ca/</u>) for their help and advice.

Data acquisition and analysis

Roy W. Dudley and his team (Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital) for the data acquisition and annotations, as well as Sylvain Baillet and his team (McConnell Brain Imaging Center, Montreal Neurological Institute) and Hospital, McGill University) for data analysis, ground truth annotation and discussions. Preprocessing steps were performed with Brainstorm (Tadel et al. 2011) which is documented and freely available under the GNU general public licence (<u>http://neuroimage.usc.edu/brainstorm</u>).

Deep learning architecture

Samira Ebrahimi Kahou (Département de génie logiciel et des technologies de l'information, École de technologie supérieure, CIFAR, MILA - Quebec AI Institute) for her help and advice.

Chaires

du Canada

Model inspired by Song et al. 2021 (paper) and Vaswani et al. 2017 (paper). Implementation available on <u>github</u>.

Contact information

Linkedin - mail - github

SPINAL RESEARCH

