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Unsupervised Accuracy Estimation

Goal: Predict accuracy of pre-trained model f on test set Diegt.

Unlabeled Test Data
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Unsupervised Accuracy Estimation

Goal: Predict accuracy of pre-trained model f on test set Diegt.

Labeled Training Data Unlabeled Test Data
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— Challenging task often occurring in real-world scenarios.
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Logits-based Methods

Unlabeled Test Data
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Logits-based Methods

Unlabeled Test Data
v" Model's outputs: logits

* logits: q; = (wfqﬁ(xi), e ,W}@(Xi)),
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Logits-based Methods

Unlabeled Test Data
) v" Model’s outputs: logits

v' Different range — normalize

logits: q; = (wfqﬁ(xi), e ,W}@(Xi)),

i normalizer: o : R — A.
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Logits-based Methods

Unlabeled Test Data

A S 1»"? vl
Y @ -y @ \*J/ v' Different range — normalize

b P Eﬂg V" Fill prediction matrix Q

v" Model's outputs: logits

logits: q; = (wfqﬁ(xi), e ,W}@(Xi)),

normalizer: o : RE — Ag.
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Logits-based Methods

Unlabeled Test Data , .
Model’s outputs: logits

Different range — normalize

Fill prediction matrix Q

AN NN

Compute estimation score

logits: q; = (W] 6(x;),..., Wrd(xi)),

i normalizer: o : R — A.
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Research Questions

[Question 1: What explains the correlation between logits and generalization performance? ]
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Research Questions

[Question 1: What explains the correlation between logits and generalization performance? ]

[Question 2: How to alleviate the overconfidence issues of logits-based methods? ]
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Low-Density Separation Assumption

LDS assumption: classifier makes mistakes in high-density regions.
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(a) High-density region (b) Low-density region.

— Misclassified samples are closer to decision boundaries.
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Logits Reflect Distances to Decision Boundaries

® Decision boundary of class k — H;, = {z’ € R?|w] 2’ = 0},

MaNo: Exploiting Matrix Norm for Unsupervised Accuracy Estimation



Logits Reflect Distances to Decision Boundaries

® Decision boundary of class k — H;, = {z’ € R?|w] 2’ = 0},

* Distance point-hyperplane d(z, Hy.) = |w)! 2| / [|wk]|,
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Logits Reflect Distances to Decision Boundaries

® Decision boundary of class k — H; = {z’ € R?| w,;rz/ =0},
* Distance point-hyperplane d(z, Hy.) = |w)! 2| / [|wk]|,

® Logits reflect this distance as |qx| = |w) z| o< d(wy, 7).
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Logits Reflect Distances to Decision Boundaries

® Decision boundary of class k — H;, = {z’ € R? |w,jz’ = 0},
* Distance point-hyperplane d(z, Hy.) = |w)! 2| / [|wk]|,

® Logits reflect this distance as |qx| = |w) z| o< d(wy, 7).
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(a) High-density region (b) Low-density region.

Logits capture the generalization performance.

MaNo: Exploiting Matrix Norm for Unsupervised Accuracy Estimation



Softmax Overconfidence

=1 in-distribution (CIFAR-10) Softmax Prediction Probability
25 =1 out-of-distribution (SVHN)
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— Overconfidence and saturation of softmax outputs.
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Prediction Error Accumulation

Logits can be decomposed as follows

*
q = q + €
~— ~— ~~

model’s logits ground-truth logits prediction bias

Then, the softmax involves computing

(q;‘,k + ex)? n

exp(qi k) = exp(ajy, +ex) = 1+ (af p +ex) + 51
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Solution: Truncating the Errors

() +x)? - (aix +ex)"

exp(aqik) ~ 1+ (qf +ex) + o -

v High prediction bias ¢ — mitigate impact of errors (n < o)

MaNo: Exploiting Matrix Norm for Unsupervised Accuracy Estimation



Solution: Truncating the Errors

() +x)? - (aix +ex)"

exp(aqik) ~ 1+ (qf +ex) + o -

v High prediction bias ¢ — mitigate impact of errors (n < o)
v Low prediction bias € — use all the information (n = c0).
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Solution: Truncating

() +x)? - (aix +ex)"

exp(aqik) ~ 1+ (qf +ex) + o -

v High prediction bias ¢ — mitigate impact of errors (n < o)
v Low prediction bias € — use all the information (n = c0).

12
1.0] = Office-Home | Nuclear
7| — pacs 11 MaNo w/ Softmax
1.0 . MaNo w/ Taylor
208
= 0.9
3
Ros . 08
o
a Co7
§ 0.4 06
02 0.5
0.4
0% 02 04 056 038 1.0 o Office-Home PACS
Predicted probability Datasets
(a) Calibration curves. (b) Type of normalization.

Trade-off information completeness and error accumulation!
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MaNo: A Simple Three-Step Recipe

V' Input: Pre-trained model f, test dataset Diegt = {xl}f\]:1
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MaNo: A Simple Three-Step Recipe

V' Input: Pre-trained model f, test dataset Diegt = {xl}f\]:1

v Inference: Recover logits q; = f(x;),
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MaNo: A Simple Three-Step Recipe

Input: Pre-trained model f, test dataset Dyegy = {xl}f\]:1
Inference: Recover logits q; = f(x;),

Criterion: ®(Diest) = KL (uniform||softmax proba)

2
1) o(q)=diTET T if @(Drest) <177
! exp(q;), if ®(Diest) >

ola:) = v(q;) A
2) (ql) 21521 ’U(qz)k S K

3) S<f7 Dtest) -
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Connection to Uncertainty

Given a test set Diest and a pre-trained model f, the estimation
score S(f, Diest) provided by MaNo is inversely proportional to
the model’s uncertainty.

v Uncertain — low accuracy & high entropy — low S(f, Diest ).
v Confident — high accuracy & low entropy — high S(f, Diest)-

MaNo is positively correlated with the test accuracy.
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SOTA Results & Efficiency

e Comparison with correlation metrics p and R?,
e Comparison across architectures: ResNets, ConvNext, ViT,

® Evaluation on common benchmarks and distribution shifts.

Shift MaNo COT MDE Nuclear Dispersion ProjNorm

- 2024 2024 2023 2023 2022

Synthetic 0.991 0.988 0.947 0.982 0.960 0.971
Subpopulation  0.983 0.962 0.920 0.973 0.909 0.897
Natural 0.905 0.871 0.436 0.455 0.410 0.382
Overall improvement 2%  25% 6% 26% 28%

MaNo outperforms all the baselines while being training-free.
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Qualitative Benefit: Linear Correlation

ConfScore v.s. Test Accuracy ProjNorm v.s. Test Accuracy MaNo v.s. Test Accuracy
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MaNo linearly correlates with the ground-truth performance.
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Robustness Analysis

v'  Experiments on all distributions shifts,

V' Experiments with various architectures.
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MaNo is the best approach to use with SOTA architectures!
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Take Home Message

v" Predicting accuracy under distribution shifts is challenging.
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Take Home Message

v" Predicting accuracy under distribution shifts is challenging.

v" Most methods use logits and fail under miscalibration.
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Take Home Message

v" Predicting accuracy under distribution shifts is challenging.
v" Most methods use logits and fail under miscalibration.

v" MaNo — theoretically grounded estimation approach.
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Take Home Message

v
v
v
v

Predicting accuracy under distribution shifts is challenging.
Most methods use logits and fail under miscalibration.
MaNo — theoretically grounded estimation approach.

Benefits: SOTA, efficient, architecture agnostic, robust.
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To Know More

This work has been accepted at NeurlPS 2024.

Paper: https://arxiv.org/pdf/2405.18979
Code: https://github.com/Renchunzi-Xie/MaNo

To know more about my research, check out my website!

ambroiseodt.github.io
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https://arxiv.org/pdf/2405.18979
https://github.com/Renchunzi-Xie/MaNo
https://ambroiseodt.github.io/

Self-Promotion

Clustering Head: A Visual Case Study of the Training
Dynamics in Transformers

T |
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https://arxiv.org/pdf/2410.24050
https://github.com/facebookresearch/pal

Self-Promotion

Using our visual sandbox, we identify clustering heads, circuits
that learn the invariance of the sparse addition modular task and
study their training dynamics.
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Paper: https://arxiv.org/pdf/2410.24050
Code: https://github.com/facebookresearch/pal
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https://arxiv.org/pdf/2410.24050
https://github.com/facebookresearch/pal

Thank you for your attention!
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