MaNo: Exploiting Matrix Norm for Unsupervised Accuracy Estimation

Ambroise Odonnat

Noah's Ark Lab, Inria Université Rennes 2, CNRS, IRISA

ERIC Laboratory, University of Lyon 2

September 15, 2025

Co-authors

Renchunzi Xie NTU

Vasilii Feofanov Noah's Ark Lab

Weijian Deng ANU

Jianfeng Zhang Noah's Ark Lab

Bo An NTU

Outline

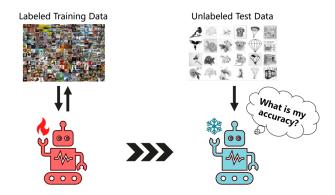
- Introduction
- Pirst Principle Analysis
- Our Method: MaNo
- 4 Experimental Results
- **5** Take Home Message

Outline

- Introduction
- Pirst Principle Analysis
- Our Method: MaNo
- 4 Experimental Results
- **5** Take Home Message

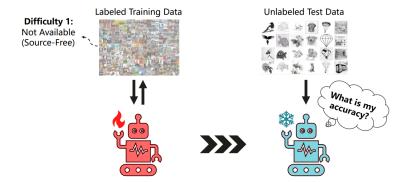
Unsupervised Accuracy Estimation

Goal: Predict accuracy of pre-trained model f on test set $\mathcal{D}_{\text{test}}$.



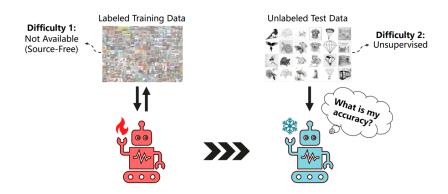
Unsupervised Accuracy Estimation

Goal: Predict accuracy of pre-trained model f on test set $\mathcal{D}_{\text{test}}$.



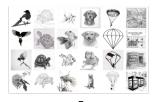
Unsupervised Accuracy Estimation

Goal: Predict accuracy of pre-trained model f on test set \mathcal{D}_{test} .



 \rightarrow Challenging task often occurring in real-world scenarios.

Unlabeled Test Data



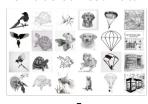
✓ Model's outputs: logits

logits:
$$\mathbf{q}_i = (\mathbf{w}_1^{\top} \phi(\mathbf{x}_i), \dots, \mathbf{w}_K^{\top} \phi(\mathbf{x}_i)),$$

- ✓ Model's outputs: logits
- \checkmark Different range \rightarrow normalize

logits:
$$\mathbf{q}_i = (\mathbf{w}_1^{\top} \phi(\mathbf{x}_i), \dots, \mathbf{w}_K^{\top} \phi(\mathbf{x}_i)),$$

normalizer: $\sigma : \mathbb{R}^K \to \Delta_K.$



- ✓ Model's outputs: logits
- \checkmark Different range \rightarrow normalize
- \checkmark Fill prediction matrix ${f Q}$

logits:
$$\mathbf{q}_i = (\mathbf{w}_1^{\top} \phi(\mathbf{x}_i), \dots, \mathbf{w}_K^{\top} \phi(\mathbf{x}_i)),$$

normalizer: $\sigma : \mathbb{R}^K \to \Delta_K.$

- ✓ Model's outputs: logits
- \checkmark Different range \rightarrow normalize
- √ Fill prediction matrix Q
- ✓ Compute estimation score

logits:
$$\mathbf{q}_i = (\mathbf{w}_1^{\top} \phi(\mathbf{x}_i), \dots, \mathbf{w}_K^{\top} \phi(\mathbf{x}_i)),$$

normalizer: $\sigma : \mathbb{R}^K \to \Delta_K.$

$$ightharpoonup \mathbf{Q} = \begin{pmatrix} \sigma(\mathbf{q}_1) \\ \dots \\ \sigma(\mathbf{q}_N) \end{pmatrix}$$
 Score

Research Questions

Question 1: What explains the correlation between logits and generalization performance?

Research Questions

Question 1: What explains the correlation between logits and generalization performance?

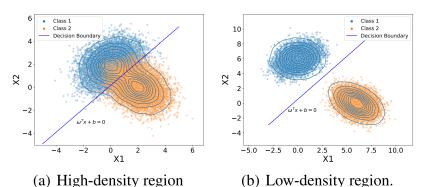
Question 2: How to alleviate the overconfidence issues of logits-based methods?

Outline

- Introduction
- Pirst Principle Analysis
- Our Method: MaNo
- 4 Experimental Results
- **5** Take Home Message

Low-Density Separation Assumption

LDS assumption: classifier makes mistakes in high-density regions.



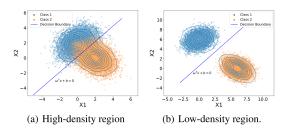
→ Misclassified samples are closer to decision boundaries.

• Decision boundary of class $k \to \mathcal{H}_k = \{ \mathbf{z}' \in \mathbb{R}^q \, | \, \boldsymbol{\omega}_k^\top \boldsymbol{z}' = 0 \}$,

- Decision boundary of class $k \to \mathcal{H}_k = \{\mathbf{z}' \in \mathbb{R}^q \,|\, \boldsymbol{\omega}_k^\top \boldsymbol{z}' = 0\}$,
- Distance point-hyperplane $\mathrm{d}(\mathbf{z},\mathcal{H}_k) = |oldsymbol{\omega}_k^{ op} z| \, / \, \|oldsymbol{\omega}_k\|$,

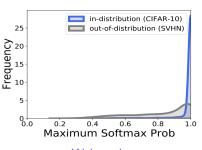
- Decision boundary of class $k \to \mathcal{H}_k = \{\mathbf{z}' \in \mathbb{R}^q \,|\, \boldsymbol{\omega}_k^\top \boldsymbol{z}' = 0\}$,
- Distance point-hyperplane $\operatorname{d}(\mathbf{z},\mathcal{H}_k) = |\boldsymbol{\omega}_k^{ op} \boldsymbol{z}| \, / \, \|\boldsymbol{\omega}_k\|$,
- Logits reflect this distance as $|\mathbf{q}_k| = |\boldsymbol{\omega}_k^{\top} \mathbf{z}| \propto d(\boldsymbol{\omega}_k, \mathbf{z}).$

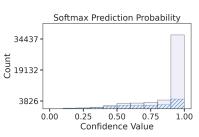
- Decision boundary of class $k \to \mathcal{H}_k = \{ \mathbf{z}' \in \mathbb{R}^q \, | \, \boldsymbol{\omega}_k^\top \boldsymbol{z}' = 0 \}$,
- Distance point-hyperplane $\mathrm{d}(\mathbf{z},\mathcal{H}_k) = |\boldsymbol{\omega}_k^{ op} \boldsymbol{z}| \, / \, \|\boldsymbol{\omega}_k\|$,
- Logits reflect this distance as $|\mathbf{q}_k| = |\boldsymbol{\omega}_k^{\top} \mathbf{z}| \propto d(\boldsymbol{\omega}_k, \mathbf{z})$.



Logits capture the generalization performance.

Softmax Overconfidence





Wei et al.

Odonnat et al.

 \rightarrow Overconfidence and saturation of softmax outputs.

Prediction Error Accumulation

Logits can be decomposed as follows

$$\mathbf{q} = \mathbf{q}^* + \mathbf{arepsilon}$$
 model's logits ground-truth logits prediction bias

Then, the softmax involves computing

$$\exp(\mathbf{q}_{i,k}) = \exp(\mathbf{q}_{i,k}^* + \varepsilon_k) = 1 + (\mathbf{q}_{i,k}^* + \varepsilon_k) + \frac{(\mathbf{q}_{i,k}^* + \varepsilon_k)^2}{2!} + \dots$$

Solution: Truncating the Errors

$$\exp(\mathbf{q}_{i,k}) \approx 1 + (\mathbf{q}_{i,k}^* + \varepsilon_k) + \frac{(\mathbf{q}_{i,k}^* + \varepsilon_k)^2}{2!} + \dots + \frac{(\mathbf{q}_{i,k}^* + \varepsilon_k)^n}{n!}.$$

 \checkmark High prediction bias ε → mitigate impact of errors (n < ∞)

Solution: Truncating the Errors

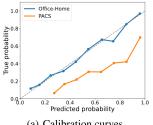
$$\exp(\mathbf{q}_{i,k}) \approx 1 + (\mathbf{q}_{i,k}^* + \varepsilon_k) + \frac{(\mathbf{q}_{i,k}^* + \varepsilon_k)^2}{2!} + \dots + \frac{(\mathbf{q}_{i,k}^* + \varepsilon_k)^n}{n!}.$$

- \checkmark High prediction bias ε → mitigate impact of errors (n < ∞)
- ✓ Low prediction bias $\varepsilon \to \text{use}$ all the information $(n = \infty)$.

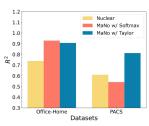
Solution: Truncating the Errors

$$\exp(\mathbf{q}_{i,k}) \approx 1 + (\mathbf{q}_{i,k}^* + \varepsilon_k) + \frac{(\mathbf{q}_{i,k}^* + \varepsilon_k)^2}{2!} + \dots + \frac{(\mathbf{q}_{i,k}^* + \varepsilon_k)^n}{n!}.$$

- High prediction bias $\varepsilon \to \text{mitigate impact of errors } (n < \infty)$
- Low prediction bias $\varepsilon \to \text{use}$ all the information $(n = \infty)$.



(a) Calibration curves.



(b) Type of normalization.

Trade-off information completeness and error accumulation!

Outline

- Introduction
- Pirst Principle Analysis
- Our Method: MaNo
- 4 Experimental Results
- **5** Take Home Message

MaNo: A Simple Three-Step Recipe

✓ Input: Pre-trained model f, test dataset $\mathcal{D}_{\text{test}} = \{\mathbf{x}_i\}_{i=1}^N$.

MaNo: A Simple Three-Step Recipe

- ✓ Input: Pre-trained model f, test dataset $\mathcal{D}_{\text{test}} = \{\mathbf{x}_i\}_{i=1}^N$.
- ✓ Inference: Recover logits $\mathbf{q}_i = f(\mathbf{x}_i)$,

MaNo: A Simple Three-Step Recipe

- ✓ Input: Pre-trained model f, test dataset $\mathcal{D}_{\text{test}} = \{\mathbf{x}_i\}_{i=1}^N$.
- ✓ *Inference:* Recover logits $\mathbf{q}_i = f(\mathbf{x}_i)$,
- ✓ Criterion: $\Phi(\mathcal{D}_{test}) = KL(uniform||softmax proba)$

1)
$$v(\mathbf{q}_i) = \begin{cases} 1 + \mathbf{q}_i + \frac{\mathbf{q}_i^2}{2}, & \text{if } \Phi(\mathcal{D}_{\text{test}}) \leq \eta \\ \exp(\mathbf{q}_i), & \text{if } \Phi(\mathcal{D}_{\text{test}}) > \eta \end{cases}$$

2)
$$\sigma(\mathbf{q}_i) = \frac{v(\mathbf{q}_i)}{\sum_{k=1}^K v(\mathbf{q}_i)_k} \in \Delta_K$$

3)
$$S(f, \mathcal{D}_{\mathsf{test}}) = \frac{1}{\sqrt[p]{NK}} \|\mathbf{Q}\|_p = \left(\frac{1}{NK} \sum_{i=1}^N \sum_{k=1}^K |\sigma(q_i)_k|^p\right)^{\frac{1}{p}}$$

Connection to Uncertainty

Theorem (Xie, O. et al.)

Given a test set \mathcal{D}_{test} and a pre-trained model f, the estimation score $\mathcal{S}(f,\mathcal{D}_{test})$ provided by MaNo is inversely proportional to the model's uncertainty.

- ✓ Uncertain \rightarrow low accuracy & high entropy \rightarrow low $\mathcal{S}(f, \mathcal{D}_{test})$,
- ✓ Confident \rightarrow high accuracy & low entropy \rightarrow high $S(f, \mathcal{D}_{test})$.

MaNo is positively correlated with the test accuracy.

Outline

- Introduction
- Pirst Principle Analysis
- Our Method: MaNo
- 4 Experimental Results
- **5** Take Home Message

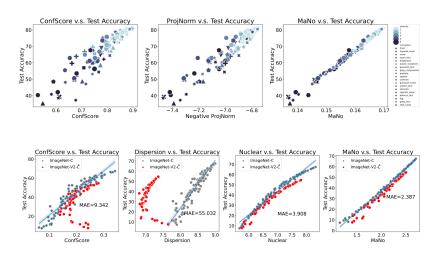
SOTA Results & Efficiency

- Comparison with correlation metrics ρ and R^2 ,
- Comparison across architectures: ResNets, ConvNext, ViT,
- Evaluation on common benchmarks and distribution shifts.

Shift	MaNo -	COT 2024	MDE 2024	Nuclear 2023	Dispersion 2023	ProjNorm 2022
Synthetic	0.991	0.988	0.947	0.982	0.960	0.971
Subpopulation	0.983	0.962	0.920	0.973	0.909	0.897
Natural	0.905	0.871	0.436	0.455	0.410	0.382
Overall improvement		2 %	25 %	6 %	26 %	28%

MaNo outperforms all the baselines while being training-free.

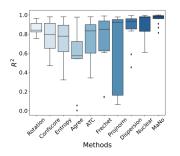
Qualitative Benefit: Linear Correlation

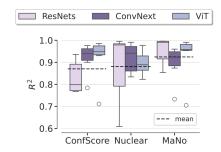


MaNo linearly correlates with the ground-truth performance.

Robustness Analysis

- ✓ Experiments on all distributions shifts,
- ✓ Experiments with various architectures.





MaNo is the best approach to use with SOTA architectures!

Outline

- Introduction
- Pirst Principle Analysis
- Our Method: MaNo
- 4 Experimental Results
- **5** Take Home Message

✓ Predicting accuracy under distribution shifts is challenging.

- ✓ Predicting accuracy under distribution shifts is challenging.
- ✓ Most methods use logits and fail under miscalibration.

- ✓ Predicting accuracy under distribution shifts is challenging.
- ✓ Most methods use logits and fail under miscalibration.
- ✓ MaNo → theoretically grounded estimation approach.

- ✓ Predicting accuracy under distribution shifts is challenging.
- ✓ Most methods use logits and fail under miscalibration.
- ✓ MaNo → theoretically grounded estimation approach.
- ✓ Benefits: SOTA, efficient, architecture agnostic, robust.

To Know More

This work has been accepted at NeurIPS 2024.

Paper: https://arxiv.org/pdf/2405.18979

Code: https://github.com/Renchunzi-Xie/MaNo

To know more about my research, check out my website!

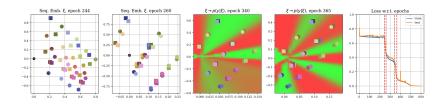
ambroiseodt.github.io

Self-Promotion

Clustering Head: A Visual Case Study of the Training Dynamics in Transformers

Self-Promotion

Using our visual sandbox, we identify **clustering heads**, circuits that learn the invariance of the sparse addition modular task and study their training dynamics.



Paper: https://arxiv.org/pdf/2410.24050

Code: https://github.com/facebookresearch/pal

Thank you for your attention!