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Time Series Data

In many applications, data are gathered sequentially.
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Multivariate Long-Term Forecasting

D-dimensional time series of length L → predict next H values.

• Training set of N observations ({X(i)}Ni=0, {Y(i)}Ni=0),

• Find predictor fω : RD×L → RD×H that minimizes the MSE

Ltrain(ω) =
1

ND

N∑
i=0

∥Y(i) − fω(X
(i))∥2F.
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Transformers for Time Series Forecasting

Motivation

• Transformers tailored to deal with sequential data,

• Impressive results in NLP and Computer Vision.

Main challenges

1 Quadratic computation of self-attention,

2 Complex long-term dependencies.
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Transformers for Time Series Forecasting

Main challenges

1 Quadratic complexity of self-attention
• Sparse attention: LogTrans [5], Informer [13]
• Modified attention: Pyraformer [6]

2 Complex long-term dependencies
• Decomposition scheme: Autoformer [10], Pyraformer [6]
• Fourier domain: FEDformer [14]

It leads to a wide range of Anything-formers with heavy and
complex implementation and many parameters.
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Failure of Transformers

[11] showed that linear models outperform SOTA Anything-former.
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Starting Point: Linear Regression

• Generate toy data according to Y = XWtoy + ε,

• Design the simplest Transformer possible

f(X) = [X+A(X)XWV WO]W

A(X) = softmax

(
XWQW⊤

KX⊤
√
dm

)
∈ RD×D.

Theorem (Ilbert, O., Feofanov et al.)

For WQ,WK ,WV ,WO fixed, there exists an infinity W such
that f(X) = XWtoy, i.e., the optimal solution (oracle) is reached.
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Poor Generalization

• Oracle: optimal solution,
• Transformer with WQ,WK ,WV ,WO,W trainable,
• Random Transformer: only W is trainable.
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Despite its simplicity, Transformer overfits a lot. Fixing the
attention weight improves generalization.

Ambroise Odonnat SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting 10/34



Similar Behaviour with other Optimizers
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Poor generalization of Transformer with SGD, Adam, and
AdamW.
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Trainability Issues due to the Attention

Hypothesis from NLP and Computer Vision

• Transformers have sharp loss landscape [2]
• Convergence to sharp minima,
• Poor generalization.
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Trainability Issues due to the Attention

Hypothesis from NLP and Computer Vision

• Transformers have sharp loss landscape [2],
• Attention suffers from entropy collapse [12].

• Entropy = average entropy of the rows,
• It causes training instability.
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Trainability Issues due to the Attention

Hypothesis from NLP and Computer Vision

• Transformers have sharp loss landscape [2],
• Attention suffers from entropy collapse [12].

101

104

108

1012

Sh
ar

pn
es

s  
m

ax

0 50 110
Training Epochs

0.01

0.06

1.94

At
te

nt
io

n 
En

tro
py

Transformer Transformer + SAM Random Transformer

Training the attention induces an entropy collapse and a
sharp loss landscape.
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Existing Solutions

1 σReparam [12]

Replace each weight matrix W by

Ŵ =
γ

∥W∥2
W, with γ ∈ R learnable ,

2 Sharpness-Aware Minimization (SAM) [3]

Replace the training loss Ltrain by

LSAM
train (ω) = max

∥ε∥<ρ
Ltrain(ω + ε).
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σReparam doesn’t solve the problem, but SAM does.

Contrary to NLP and Computer Vision, entropy collapse seems
benign in time series forecasting while sharpness is harmful.
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σReparam doesn’t solve the problem, but SAM does.

Contrary to NLP and Computer Vision, entropy collapse seems
benign in time series forecasting while sharpness is harmful.

0 50 100
Training Epochs

0.8

2.8

4.7
Va

lid
at

io
n 

Lo
ss

Oracle
Transformer

Reparam
Transformer + SAM

σReparam helps but is not sufficient while using SAM leads
to the optimal solution (oracle).
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SAMformer: SAM & Channel-Wise Attention

• Input X ∈ RD×L, output f(X) ∈ RD×H ,

• Reduce distribution shift with RevIN [4],

• Channel-wise attention A(X) ∈ RD×D,

• Smooth loss landscape with SAM [3].

A(X) = softmax

(
XWQW

⊤
KX

⊤
√
dm

)
f(X) = [X+A(X)XWVWO]W

SAMformer is a shallow transformer trained with SAM.
→ One head, one encoder, 15 lines of code!
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Baselines & Datasets

All-MLP model (2023): TSMixer [1].

Transformers (2021-2022): FEDformer [14], Autoformer [10].

Recent Transformers (2023-2024): iTransformer [7], PatchTST [8].

Dataset ETTh1/ETTh2 ETTm1/ETTm2 Electricity Exchange Traffic Weather

# features 7 7 321 8 862 21
# time steps 17420 69680 26304 7588 17544 52696
Granularity 1 hour 15 minutes 1 hour 1 day 1 hour 10 minutes
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SOTA Performance

Dataset
SAMformer iTransformer PatchTST TSMixer FEDformer Autoformer

- 2024 2023 2023 2022 2021

ETTh1 0.410 0.454 0.469 0.437 0.440 0.496

ETTh2 0.344 0.383 0.387 0.357 0.437 0.450

ETTm1 0.373 0.407 0.387 0.385 0.448 0.588

ETTm2 0.269 0.288 0.281 0.289 0.305 0.327

Traffic 0.425 0.428 0.481 0.620 0.610 0.628

Weather 0.260 0.258 0.259 0.267 0.309 0.338

Overall improvement 6.58% 8.79% 13.2% 22.5% 35.9%

SAMformer outperforms all baselines while having
significantly fewer parameters.
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Smoother Loss Landscape
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SAM provides a smoother loss landscape . . .
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Better Generalization
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. . . leading to better generalization and robustness.
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Better Signal Propagation

Transformer Reparam SAMformer 

0.2

0.5

0.8

Channel-wise attention improves the propagation of the
signal with self-feature correlations as in ViTs.
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Intuition behind the Failure of σReparam

Theorem (Ilbert, O., Feofanov et al.)

Applying σReparam [12] leads to attention rank collapse.

∥XWQW
⊤
KX⊤∥∗ ≤ ∥WQW

⊤
K∥2︸ ︷︷ ︸

goes to 0 with σReparam

∥X∥2F.
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Strong Competitor to MOIRAI

• MOIRAI [9]: foundation model trained on 27B samples,
• Nb. params: small (14M), base (91M) and large (314M).

Dataset
Full-shot Zero-shot

SAMformer MOIRAISmall MOIRAIBase MOIRAILarge

ETTh1 0.410 0.400 0.434 0.510

ETTh2 0.344 0.341 0.345 0.354

ETTm1 0.373 0.448 0.381 0.390

ETTm2 0.269 0.300 0.272 0.276

Electricity 0.181 0.233 0.188 0.188

Weather 0.260 0.242 0.238 0.259

Overall MSE improvement 6.9% 1.1% 7.6%

SAMformer outperforms MOIRAI while having significantly
fewer parameters!

Ambroise Odonnat SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting 23/34



Outline

1 Introduction

2 Failure of Transformers

3 SAMformer

4 Experiments

5 Take Home Message

Ambroise Odonnat SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting 24/34



Easier, Better, Faster, Stronger

Findings

• Transformer failure → trainability issues of the attention,

• In time series forecasting, entropy collapse is benign,

• But sharpness prevents good generalization.

Proposal

• SAMformer: RevIN + channel-wise attention + SAM,

• SOTA and lightest model,

• Strong competitor to MOIRAI [9].
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To Know More

This work has been accepted as an Oral at ICML 2024, Vienna.
You may find the links to the paper and the code below. To know
more about my research, check my website: ambroiseodt.github.io
and feel free to contact me.

⋆ Paper: https://arxiv.org/pdf/2402.10198

⋆ Code: https://github.com/romilbert/samformer
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Self-Promotion

MANO: Exploiting Matrix Norm for Unsupervised Accuracy
Estimation Under Distribution Shifts

https://arxiv.org/pdf/2405.18979
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Thanks for your attention !
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