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Introduction

In some applications, data acquisition is cheaper than labeling . . .
blablabla
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Introduction

. . . and supervised learning is inefficient.
blablabla
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Semi-Supervised Learning (SSL)

SSL → learn from a few labeled and many unlabeled examples.
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Families of SSL Methods

• Pseudo-labeling (Amini et al., 2023):
• Unlabeled regularization (Feofanov et al., 2023)
• Self-training (Feofanov et al., 2019)

• Graph-based algorithms (van Engelen and Hoos, 2020):
• Label propagation
• Label spreading

• Unsupervised preprocessing (van Engelen and Hoos, 2020):
• Cluster-then-label
• Feature extraction: auto-encoders, PCA
• Pre-training: self-supervised learning, stacked auto-encoders
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Low Density Separation

Range of possible supervised classifiers is vast: we need to make
assumptions.
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Low Density Separation

Low Density Separation (LDS) assumption: push boundary away
from regions of unlabeled data.
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Family of SSL Methods

• Pseudo-labeling (Amini et al., 2023):
• Unlabeled regularization (Feofanov et al., 2023)
• Self-training (Feofanov et al., 2019)

• Graph-based algorithms (van Engelen and Hoos, 2020):
• Label propagation
• Label spreading

• Unsupervised preprocessing (van Engelen and Hoos, 2020):
• Cluster-then-label
• Feature extraction: auto-encoders, PCA
• Pre-training: self-supervised learning, stacked auto-encoders
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Self-Training

Start from a supervised classifier trained on the labeled set.
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Self-Training

Predict labels and confidence scores for unlabeled data.
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Self-Training

Pseudo-label most confident data and include in the labeled set.
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Self-Training

Retrain the model and repeat the same procedure again.
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Self-Training

And again. . .
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Self-Training

Until there are no data to pseudo-label.
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Self-Training

Self-training pushed the boundary away from the confident data.
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Two Fundamental Questions

1 Confidence Estimation → How to rank unlabeled data?

2 Pseudo-Labeling Policy → How to select unlabeled data for
pseudo-labeling at each iteration?

In this work, we focus on Confidence Estimation.
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Failure Cases

Requirements → trust the classifier’s predictions.
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Failure Cases

Problem → not safe since the prediction can be wrong.
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Failure Cases

Biased prediction confidence ⇒ wrong direction can be chosen.
→ This can occur when there is a distribution shift in the data.
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Sample Selection Bias

• SSL assumption: labeled and unlabeled data are i.i.d.

• Confidence can be biased when this assumption does not hold

• Sample Selection Bias (SSB): data labeling subject to
constraints

• Creation of group study in clinical trials;

• People with poor mobility less likely to be in street surveys;

• Labeling can be constrained for privacy reasons.

• SSB has been studied but not in the case of SSL.
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SSL under Sample Selection Bias

SSL + SSB combines SSL and Sample Selection Bias (SSB):

1 Few labeled examples (SSL)

2 Biased labeling procedure (SSB)

Real Data

i.i.d. SSL SSL + SSB

Goal → obtain a method good on both i.i.d. SSL and SSL + SSB.
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Implementation of SSL + SSB

Select the labeled set to violate the i.i.d. assumption.

• Binary selection variable si for each xi;

• si = 1 if xi is labeled, si = 0 otherwise;

• Model P(si = 1|xi, yi) to violate i.i.d. assumption.
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Implementation of SSL + SSB

Select the labeled set to violate the i.i.d. assumption.

PCA-Bias → for each class c,

1 Apply PCA on training data of class c;

2 Compute proj1(xi), projection value on PC1;

3 P(si = 1|xi, yi = c) ∝ exp(r · |proj1(xi)|), r > 0.
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Implementation of SSL + SSB

Select the labeled set to violate the i.i.d. assumption.
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Pseudo-Labeling Policies

• ERM corresponds to supervised learning on the labeled set

• PLθ=0.8 uses a fixed threshold θ = 0.8 (Lee, 2013)

• CSTA∆=0.4 takes ∆% most confident (Cascante-Bonilla et al.,
2020)

• MSTA optimizes the threshold to balance the error and the
amount of data pseudo-labeled (Feofanov et al., 2019)
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Failure of Self-Training under SSL + SSB
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Figure: Test accuracies of the different baselines on 5 datasets. Full
results to be found here.
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Unreliable Model Selection

LOO over-optimistic w.r.t. generalization performance (Figure 1).

• Leave one labeled point out;

• Train on the remaining nℓ−1;

• Test on the one left out;

• Repeat for each labeled point.
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Figure: LOO on Mnist.
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Motivation

softmax-based confidence measure is unreliable in SSL + SSB.

• NNs are overconfident;

• softmax predictions biased
towards the labeled set.
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→ We propose a novel confidence measure for NNs.
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Leveraging Ensemble Diversity

Softmax Proposed -similarity
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agreement loss

We jointly train the ensemble to

1 Fit very well the labeled data

2 Disagree as much as possible on unlabeled data
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Leveraging Ensemble Diversity
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T -similarity

• We define the T -similarity as:

sT (x) =
1

M(M − 1)

∑
h̸=h̃∈T

h(x)⊤h̃(x).

• For any x, we have 0 ≤ sT (x) ≤ 1.
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Practical Implementation

1 Projection layers are learned through a classification head;

2 Confidence estimator is ensemble of M=5 linear heads that
don’t affect representation.
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Figure: Architecture of the model.
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Theoretical Analysis

• Fixed representation of dimension d, binary linear classification

• Linear ensemble W = {wm ∈ Rd|1 ≤ m ≤ M}
• Prediction of ωm on x is sign(ω⊤

mx)

L(W) :=
1

Mnℓ

M∑
m=1

nℓ∑
i=1

(
yi − ω⊤

mxi

)2

︸ ︷︷ ︸
label fidelity term

+
1

M

M∑
m=1

λm∥ωm∥2︸ ︷︷ ︸
regularization

+
γ

nuM(M − 1)

∑
m̸=k

nℓ+nu∑
i=nℓ+1

w⊤
mxiw

⊤
k xi︸ ︷︷ ︸

agreement term

,

(P)

where γ controls the influence of the diversity on the learning.
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Theoretical Analysis

• Fixed representation of dimension d, binary linear classification

• Linear ensemble W = {wm ∈ Rd|1 ≤ m ≤ M}
• Prediction of ωm on x is sign(ω⊤

mx)

Theorem (O., Feofanov, Redko)

1 Convergence to a stationary point under mild assumption

2 Lower-bound on the diversity of stationary points

3 Connection to contrastive learning
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Convergence to a Stationary Point

• Labeled set (Xℓ,yℓ) = (xi, yi)
nℓ
i=1

• Unlabeled set Xu = (xi)
nℓ+nu
i=nℓ+1

• Assumption A: ∀m ∈ J1,MK, λm > γ(M+1)
nu(M−1)λmax(X

⊤
uXu).

Theorem (O., Feofanov, Redko)

Under Assumption A, L is strictly convex and coercive on Rd×M .
Hence, the optimization problem (P) admits a unique solution W∗

that verifies
∇L(W∗) = 0. (1)
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Ensemble Diversity

ℓdiv(W,Xu)=− 1

nuM(M − 1)

∑
m ̸=k

ω⊤
mX⊤

uXuωk.

Theorem (O., Feofanov, Redko)

γℓdiv(W
∗,Xu) ≥

1

2nℓM

M∑
m=1

∥yℓ −Xℓω
∗
m∥22

+
1

2M

M∑
m=1

(ω∗
m)⊤

(
λmId +

X⊤
ℓ Xℓ

nℓ

)
ω∗

m.

1 Trade-off between supervised performance and margin term

2 Assuming orthogonality, the predictors ωm span the M
directions of largest variance of the labeled data.
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Ensemble Diversity

ℓdiv(W,Xu)=− 1

nuM(M − 1)

∑
m ̸=k

ω⊤
mX⊤

uXuωk.

Theorem (O., Feofanov, Redko)

γℓdiv(W
∗,Xu) ≥

1

2M

(
λ+

1

nℓ
λmin

(
X⊤

ℓ Xℓ

))
∥W∗∥2F.

1 Direction of smallest variance is also important for diversity

2 Theorem shows the importance of representation learning
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Diversity provides Calibrated Confidence Measure
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Figure: Increasing the diversity improves the classifier’s calibration
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Pseudo-Labeling Policies

• ERM corresponds to supervised learning on the labeled set

• PLθ=0.8 uses a fixed threshold θ = 0.8 (Lee, 2013)

• CSTA∆=0.4 takes ∆% most confident (Cascante-Bonilla et al.,
2020)

• MSTA optimizes the threshold to balance the error and the
amount of data pseudo-labeled (Feofanov et al., 2019)
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Results in SSL+SSB

Dataset ERM
PLθ=0.8 CSTA∆=0.4 MSTA

softmax T -similarity softmax T -similarity softmax T -similarity

Cod-RNA 74.51± 8.86 74.75± 8.14 80.06± 3.55 73.39± 7.36 78.39± 4.66 75.28± 8.79 76.88± 7.67
COIL-20 84.54± 2.19 84.69± 3.56 84.57± 2.85 84.38± 3.05 84.57± 3.16 84.32± 2.34 84.07± 2.85
Digits 75.68± 4.59 80.47± 3.8 78.2± 3.34 78.4± 3.28 79.14± 3.5 78.02± 5.15 79.8± 5.92
DNA 78.82± 2.31 80.29± 2.24 79.06± 2.31 80.12± 2.08 80.76± 2.24 80.89± 2.64 84.09± 1.7
DryBean 64.6± 3.89 65.6± 4.18 61.55± 4.91 64.91± 3.72 64.6± 3.53 66.24± 4.31 67.0± 3.96
HAR 82.57± 1.96 82.87± 3.02 83.12± 2.27 82.19± 2.61 83.53± 3.77 81.35± 2.54 81.16± 1.63
Mnist 50.74± 2.25 51.08± 2.55 52.69± 2.42 51.7± 3.52 54.26± 1.82 51.6± 2.58 54.18± 2.34
Mushrooms 69.45± 7.29 59.53± 10.46 71.36± 6.63 62.98± 7.25 77.55± 7.65 72.16± 7.59 76.16± 13.04
Phishing 67.42± 3.55 66.08± 5.66 77.41± 3.93 66.88± 5.64 76.17± 8.58 69.48± 4.37 75.83± 7.52
Protein 57.57± 6.33 57.45± 6.36 57.61± 6.23 56.09± 5.61 57.74± 7.8 58.81± 6.54 59.88± 6.29
Rice 79.19± 5.12 80.54± 4.31 81.1± 4.28 79.88± 4.48 81.56± 3.61 80.35± 4.89 82.63± 5.63
Splice 66.13± 4.47 67.14± 2.62 67.45± 2.53 67.28± 2.07 68.05± 2.17 66.08± 4.98 66.32± 4.73
Svmguide1 70.89± 10.98 70.35± 11.74 81.07± 5.39 69.84± 11.06 74.46± 7.23 71.04± 11.11 73.13± 8.82

• T -similarity is better overall;
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Results in SSL+SSB

Dataset ERM
PLθ=0.8 CSTA∆=0.4 MSTA

softmax T -similarity softmax T -similarity softmax T -similarity

Cod-RNA 74.51± 8.86 74.75± 8.14 80.06± 3.55 73.39± 7.36 78.39± 4.66 75.28± 8.79 76.88± 7.67
COIL-20 84.54± 2.19 84.69± 3.56 84.57± 2.85 84.38± 3.05 84.57± 3.16 84.32± 2.34 84.07± 2.85
Digits 75.68± 4.59 80.47± 3.8 78.2± 3.34 78.4± 3.28 79.14± 3.5 78.02± 5.15 79.8± 5.92
DNA 78.82± 2.31 80.29± 2.24 79.06± 2.31 80.12± 2.08 80.76± 2.24 80.89± 2.64 84.09± 1.7
DryBean 64.6± 3.89 65.6± 4.18 61.55± 4.91 64.91± 3.72 64.6± 3.53 66.24± 4.31 67.0± 3.96
HAR 82.57± 1.96 82.87± 3.02 83.12± 2.27 82.19± 2.61 83.53± 3.77 81.35± 2.54 81.16± 1.63
Mnist 50.74± 2.25 51.08± 2.55 52.69± 2.42 51.7± 3.52 54.26± 1.82 51.6± 2.58 54.18± 2.34
Mushrooms 69.45± 7.29 59.53± 10.46 71.36± 6.63 62.98± 7.25 77.55± 7.65 72.16± 7.59 76.16± 13.04
Phishing 67.42± 3.55 66.08± 5.66 77.41± 3.93 66.88± 5.64 76.17± 8.58 69.48± 4.37 75.83± 7.52
Protein 57.57± 6.33 57.45± 6.36 57.61± 6.23 56.09± 5.61 57.74± 7.8 58.81± 6.54 59.88± 6.29
Rice 79.19± 5.12 80.54± 4.31 81.1± 4.28 79.88± 4.48 81.56± 3.61 80.35± 4.89 82.63± 5.63
Splice 66.13± 4.47 67.14± 2.62 67.45± 2.53 67.28± 2.07 68.05± 2.17 66.08± 4.98 66.32± 4.73
Svmguide1 70.89± 10.98 70.35± 11.74 81.07± 5.39 69.84± 11.06 74.46± 7.23 71.04± 11.11 73.13± 8.82

• T -similarity is better overall;

• Even go from degradation to improvement on 2 datasets.
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• T -similarity is better overall;

• Even go from degradation to improvement on 2 datasets;

• Our approach remains similar to softmax in i.i.d. SSL.
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Discussion

1 Practical and principled framework to study SSL + SSB;

2 Calibrated confidence measure;

3 T -similarity good both in i.i.d. SSL and SSL + SSB.

Future work → use T -similarity for iterative self-training, domain
adaptation, or uncertainty modeling.
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To Know More

This work has been accepted to AISTATS 2024, Valencia, Spain.
You may find the links to the paper and the code below. to know
more about my research, see my website: ambroiseodt.github.io
and feel free to contact me.

• Paper: https://arxiv.org/abs/2310.14814

• Code: https://github.com/ambroiseodt/tsim
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Self-Promotion

SAMformer: Unlocking the Potential of Transformers in
Time Series Forecasting - Oral ICML 2024
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• Paper: https://arxiv.org/pdf/2402.10198

• Code: https://github.com/romilbert/samformer
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Datasets

Dataset Size # of lab. examples nℓ Dimension d # classes C

Cod-RNA 59535 99 8 2
COIL-20 1440 200 1024 20
Digits 1797 99 64 10
DNA 3186 149 180 6
DryBean 13543 104 16 7
HAR 10299 299 561 3
Mnist 70000 100 784 10
Mushrooms 8124 79 112 2
Phishing 11055 99 68 2
Protein 1080 80 77 8
Rice 3810 29 7 2
Splice 3175 39 20 2
Svmguide1 3089 39 4 2

Table: Characteristics of datasets used in our experiments
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