Leveraging Ensemble Diversity for Robust Self-Training under Sample Selection Bias

[Ambroise Odonnat](https://ambroiseodt.github.io/)

Huawei Noah's Ark Lab, Inria Université Rennes 2, CNRS, IRISA

DIG Telecom Seminar

September 24, 2024

Inzia-

O [Introduction](#page-2-0)

- **2** [Failure of Self-Training](#page-19-0)
- \bullet [Learning with the](#page-37-0) $\mathcal T$ -similarity
- **4 [Numerical Experiments](#page-49-0)**

O [Introduction](#page-2-0)

- **2** [Failure of Self-Training](#page-19-0)
- \bullet [Learning with the](#page-37-0) τ -similarity
- **A [Numerical Experiments](#page-49-0)**
- **6** [Discussion](#page-55-0)

Introduction

In some applications, data acquisition is cheaper than labeling ...

Binary Classification Problem

... and supervised learning is inefficient.

Binary Classification Problem

$\mathsf{SSL} \rightarrow \mathsf{learn}$ from a few labeled and many unlabeled examples.

 $SSL \rightarrow$ learn from a few labeled and many unlabeled examples.

- Pseudo-labeling [\(Amini et al., 2023\)](#page-61-0):
	- Unlabeled regularization [\(Feofanov et al., 2023\)](#page-62-0)
	- Self-training [\(Feofanov et al., 2019\)](#page-61-1)
- Graph-based algorithms [\(van Engelen and Hoos, 2020\)](#page-62-1):
	- Label propagation
	- Label spreading
- Unsupervised preprocessing [\(van Engelen and Hoos, 2020\)](#page-62-1):
	- Cluster-then-label
	- Feature extraction: auto-encoders, PCA
	- Pre-training: self-supervised learning, stacked auto-encoders

- **Pseudo-labeling** [\(Amini et al., 2023\)](#page-61-0):
	- Unlabeled regularization [\(Feofanov et al., 2023\)](#page-62-0)
	- Self-training [\(Feofanov et al., 2019\)](#page-61-1)
- Graph-based algorithms [\(van Engelen and Hoos, 2020\)](#page-62-1):
	- Label propagation
	- Label spreading
- Unsupervised preprocessing [\(van Engelen and Hoos, 2020\)](#page-62-1):
	- Cluster-then-label
	- Feature extraction: auto-encoders, PCA
	- Pre-training: self-supervised learning, stacked auto-encoders

Low Density Separation

Range of possible supervised classifiers is vast: we need to make assumptions.

Binary Classification Problem

Low Density Separation

Low Density Separation (LDS) assumption: push boundary away from regions of unlabeled data.

Binary Classification Problem

- **Pseudo-labeling** [\(Amini et al., 2023\)](#page-61-0):
	- Unlabeled regularization [\(Feofanov et al., 2023\)](#page-62-0)
	- Self-training [\(Feofanov et al., 2019\)](#page-61-1)
- Graph-based algorithms [\(van Engelen and Hoos, 2020\)](#page-62-1):
	- Label propagation
	- Label spreading
- Unsupervised preprocessing [\(van Engelen and Hoos, 2020\)](#page-62-1):
	- Cluster-then-label
	- Feature extraction: auto-encoders, PCA
	- Pre-training: self-supervised learning, stacked auto-encoders

Start from a supervised classifier trained on the labeled set.

Predict labels and confidence scores for unlabeled data.

Pseudo-label most confident data and include in the labeled set.

Retrain the model and repeat the same procedure again.

Self-Training Iteration 1

And again. . .

Until there are no data to pseudo-label.

Self-Training Iteration 3

Self-training pushed the boundary away from the confident data.

Ambroise Odonnat Leveraging Ensemble Diversity for Robust Self-Training under Sample Selection Bias 8/39

1 [Introduction](#page-2-0)

2 [Failure of Self-Training](#page-19-0)

 \bullet [Learning with the](#page-37-0) τ -similarity

A [Numerical Experiments](#page-49-0)

6 [Discussion](#page-55-0)

1 Confidence Estimation \rightarrow How to rank unlabeled data?

- **1** Confidence Estimation \rightarrow How to rank unlabeled data?
- \bigcirc Pseudo-Labeling Policy \rightarrow How to select unlabeled data for pseudo-labeling at each iteration?

- \bigcap Confidence Estimation \rightarrow How to rank unlabeled data?
- **②** Pseudo-Labeling Policy \rightarrow How to select unlabeled data for pseudo-labeling at each iteration?

In this work, we focus on *Confidence Estimation*.

Failure Cases

Requirements \rightarrow trust the classifier's predictions.

Failure Cases

Problem \rightarrow not safe since the prediction can be wrong.

Failure Cases

Biased prediction confidence \Rightarrow wrong direction can be chosen. \rightarrow This can occur when there is a distribution shift in the data.

- SSL assumption: labeled and unlabeled data are i.i.d.
- Confidence can be biased when this assumption does not hold

- SSL assumption: labeled and unlabeled data are i.i.d.
- Confidence can be biased when this assumption does not hold
- Sample Selection Bias (SSB): data labeling subject to constraints

- SSL assumption: labeled and unlabeled data are i.i.d.
- Confidence can be biased when this assumption does not hold
- **Sample Selection Bias (SSB):** data labeling subject to constraints
	- Creation of group study in clinical trials;
	- People with poor mobility less likely to be in street surveys;
	- Labeling can be constrained for privacy reasons.

- SSL assumption: labeled and unlabeled data are i.i.d.
- Confidence can be biased when this assumption does not hold
- **Sample Selection Bias (SSB):** data labeling subject to constraints
	- Creation of group study in clinical trials;
	- People with poor mobility less likely to be in street surveys;
	- Labeling can be constrained for privacy reasons.
- SSB has been studied but not in the case of SSL.

SSL + SSB combines SSL and Sample Selection Bias (SSB):

- **1** Few labeled examples (SSL)
- 2 Biased labeling procedure (SSB)

Goal \rightarrow obtain a method good on **both** i.i.d. SSL and SSL + SSB.

Select the labeled set to violate the i.i.d. assumption.

- Binary selection variable s_i for each \mathbf{x}_i ;
- $s_i = 1$ if \mathbf{x}_i is labeled, $s_i = 0$ otherwise;
- Model $\mathbb{P}(s_i = 1 | \mathbf{x}_i, y_i)$ to violate i.i.d. assumption.

Select the labeled set to violate the i.i.d. assumption.

 $PCA-Bias \rightarrow$ for each class c.

- \bullet Apply PCA on training data of class c ;
- \bullet Compute $\mathrm{proj}_1(\mathbf{x}_i)$, projection value on PC1;
- **3** $\mathbb{P}(s_i = 1 | \mathbf{x}_i, y_i = c) \propto \exp(r \cdot |\text{proj}_1(\mathbf{x}_i)|), \quad r > 0.$

Select the labeled set to violate the i.i.d. assumption.

- ERM corresponds to supervised learning on the labeled set
- PL_{θ=0.8} uses a fixed threshold $\theta = 0.8$ [\(Lee, 2013\)](#page-62-2)
- CSTA $_{\Delta=0.4}$ takes $\Delta\%$ most confident [\(Cascante-Bonilla et al.,](#page-61-2) [2020\)](#page-61-2)
- MSTA optimizes the threshold to balance the error and the amount of data pseudo-labeled [\(Feofanov et al., 2019\)](#page-61-1)

Failure of Self-Training under $SSL + SSB$

Figure: Test accuracies of the different baselines on 5 datasets. Full results to be found [here.](https://arxiv.org/pdf/2310.14814.pdf)

Ambroise Odonnat Leveraging Ensemble Diversity for Robust Self-Training under Sample Selection Bias 17/39

LOO over-optimistic w.r.t. generalization performance (Figure [1\)](#page-35-0).

- Leave one labeled point out;
- Train on the remaining $n_\ell-1$;
- Test on the one left out;
- Repeat for each labeled point.

Figure: LOO on Mnist.

1 [Introduction](#page-2-0)

2 [Failure of Self-Training](#page-19-0)

\bullet [Learning with the](#page-37-0) τ -similarity

A [Numerical Experiments](#page-49-0)

6 [Discussion](#page-55-0)

softmax-based confidence measure is unreliable in $SSL + SSB$.

- NNs are overconfident;
- softmax predictions biased towards the labeled set.

 \rightarrow We propose a novel confidence measure for NNs.

Leveraging Ensemble Diversity

Leveraging Ensemble Diversity

We jointly train the ensemble to

- **1** Fit very well the labeled data
- 2 Disagree as much as possible on unlabeled data

Leveraging Ensemble Diversity

We jointly train the ensemble to

- **1** Fit very well the labeled data
- **2** Disagree as much as possible on unlabeled data

$\mathcal T$ -similarity

• We define the T -similarity as:

$$
s_{\mathcal{T}}(\mathbf{x}) = \frac{1}{M(M-1)} \sum_{h \neq \tilde{h} \in \mathcal{T}} h(\mathbf{x})^{\top} \tilde{h}(\mathbf{x}).
$$

• For any x, we have
$$
0 \leq s_{\mathcal{T}}(x) \leq 1
$$
.

Practical Implementation

- **1** Projection layers are learned through a classification head;
- \bullet Confidence estimator is ensemble of $M = 5$ linear heads that don't affect representation.

Figure: Architecture of the model.

Theoretical Analysis

- Fixed representation of dimension d , binary linear classification
- $\bullet\,$ Linear ensemble $\mathbf{W}=\{\boldsymbol{w}_m\in\mathbb{R}^d|1\leq m\leq M\}$
- Prediction of $\boldsymbol{\omega}_m$ on \mathbf{x} is $\operatorname{sign}(\boldsymbol{\omega}_m^{\top}\mathbf{x})$

where γ controls the influence of the diversity on the learning.

- Fixed representation of dimension d , binary linear classification
- $\bullet\,$ Linear ensemble $\mathbf{W}=\{\boldsymbol{w}_m\in\mathbb{R}^d|1\leq m\leq M\}$
- Prediction of $\boldsymbol{\omega}_m$ on \mathbf{x} is $\operatorname{sign}(\boldsymbol{\omega}_m^{\top}\mathbf{x})$

Theorem (O., Feofanov, Redko)

- **1** Convergence to a stationary point under mild assumption
- **2** Lower-bound on the diversity of stationary points
- ³ Connection to contrastive learning

- Labeled set $(\mathbf{X}_{\ell}, \mathbf{y}_{\ell}) = (\mathbf{x}_i, y_i)_{i=1}^{n_{\ell}}$
- $\bullet\,$ Unlabeled set $\mathbf{X}_u = (\mathbf{x}_i)_{i=n_\ell+1}^{n_\ell+n_u}$ $i=n_\ell+1$
- Assumption **A**: $\forall m \in [\![1, M]\!], \lambda_m > \frac{\gamma(M+1)}{n_u(M-1)} \lambda_{\max}(\mathbf{X}_u^{\top} \mathbf{X}_u).$

Theorem (O., Feofanov, Redko)

Under Assumption A, $\mathcal L$ is strictly convex and coercive on $\mathbb R^{d\times M}$. Hence, the optimization problem (P) (P) (P) admits a unique solution W^* that verifies

$$
\nabla \mathcal{L}(\mathbf{W}^*) = 0. \tag{1}
$$

Ensemble Diversity

$$
\ell_{\textsf{div}}(\mathbf{W},\mathbf{X}_u)\!=\!-\frac{1}{n_uM(M-1)}\sum_{m\neq k}\boldsymbol{\omega}_m^\top\mathbf{X}_u^\top\mathbf{X}_u\boldsymbol{\omega}_k.
$$

Theorem (O., Feofanov, Redko)

$$
\gamma \ell_{\textit{\textbf{div}}}(\mathbf{W}^*, \mathbf{X}_u) \geq \frac{1}{2n_\ell M}\sum_{m=1}^M \lVert \mathbf{y}_\ell - \mathbf{X}_\ell \boldsymbol{\omega}_m^* \rVert_2^2 \\ + \frac{1}{2M}\sum_{m=1}^M (\boldsymbol{\omega}_m^*)^\top \left(\lambda_m \mathbf{I}_d + \frac{\mathbf{X}_\ell^\top \mathbf{X}_\ell}{n_\ell} \right) \boldsymbol{\omega}_m^*.
$$

- **1** Trade-off between supervised performance and margin term
- **2** Assuming orthogonality, the predictors ω_m span the M directions of largest variance of the labeled data.

Ensemble Diversity

$$
\ell_{\text{div}}(\mathbf{W},\mathbf{X}_u)\!=\!-\frac{1}{n_uM(M-1)}\sum_{m\neq k}\boldsymbol{\omega}_m^\top\mathbf{X}_u^\top\mathbf{X}_u\boldsymbol{\omega}_k.
$$

Theorem (O., Feofanov, Redko)

$$
\gamma \ell_{\text{div}}(\mathbf{W}^*, \mathbf{X}_u) \geq \frac{1}{2M} \bigg(\lambda + \frac{1}{n_\ell} \lambda_{\min}\left(\mathbf{X}_\ell^\top \mathbf{X}_\ell \right) \bigg) \|\mathbf{W}^*\|_{\text{F}}^2.
$$

1 Direction of smallest variance is also important for diversity

2 Theorem shows the importance of representation learning

1 [Introduction](#page-2-0)

- **2** [Failure of Self-Training](#page-19-0)
- \bullet [Learning with the](#page-37-0) τ -similarity
- **A [Numerical Experiments](#page-49-0)**

6 [Discussion](#page-55-0)

Diversity provides Calibrated Confidence Measure

Figure: Increasing the diversity improves the classifier's calibration

- ERM corresponds to supervised learning on the labeled set
- PL_{θ=0.8} uses a fixed threshold $\theta = 0.8$ [\(Lee, 2013\)](#page-62-2)
- CSTA $_{\Delta=0.4}$ takes $\Delta\%$ most confident [\(Cascante-Bonilla et al.,](#page-61-2) [2020\)](#page-61-2)
- MSTA optimizes the threshold to balance the error and the amount of data pseudo-labeled [\(Feofanov et al., 2019\)](#page-61-1)

• τ -similarity is better overall;

- τ -similarity is better overall;
- Even go from degradation to improvement on 2 datasets.

Results in SSL+SSB

- τ -similarity is better overall;
- Even go from degradation to improvement on 2 datasets;
- Our approach remains similar to softmax in i.i.d. SSL.

1 [Introduction](#page-2-0)

- **2** [Failure of Self-Training](#page-19-0)
- \bullet [Learning with the](#page-37-0) τ -similarity
- **A [Numerical Experiments](#page-49-0)**

6 [Discussion](#page-55-0)

- \bullet Practical and principled framework to study SSL $+$ SSB;
- **2** Calibrated confidence measure;
- \bullet T-similarity good both in i.i.d. SSL and SSL + SSB.

Future work \rightarrow use T-similarity for iterative self-training, domain adaptation, or uncertainty modeling.

This work has been accepted to AISTATS 2024, Valencia, Spain. You may find the links to the paper and the code below. to know more about my research, see my website: ambroiseodt.github.io and feel free to contact me.

- Paper: <https://arxiv.org/abs/2310.14814>
- Code: <https://github.com/ambroiseodt/tsim>

I thank my co-authors Vasilii Feofanov and Ievgen Redko who supervised me during the internship and without whom this project would not have existed. I would also like to thank Gabriel Peyré for his insightful comments on early drafts of the paper, as well as Malik Tiomoko, and Aladin Virmaux for the fruitful discussions that led to this work.

SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting - Oral ICML 2024

- Paper: <https://arxiv.org/pdf/2402.10198>
- Code: <https://github.com/romilbert/samformer>

Thanks for your attention !

- Amini, M.-R., Feofanov, V., Pauletto, L., Devijver, E., and Maximov, Y. (2023). Self-Training: A Survey.
- Cascante-Bonilla, P., Tan, F., Qi, Y., and Ordonez, V. (2020). Curriculum labeling: Revisiting pseudo-labeling for semi-supervised learning.
- Feofanov, V., Devijver, E., and Amini, M.-R. (2019). Transductive Bounds for the Multi-Class Majority Vote Classifier. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI'19/IAAI'19/EAAI'19. AAAI Press.

- Feofanov, V., Tiomoko, M., and Virmaux, A. (2023). Random Matrix Analysis to Balance between Supervised and Unsupervised Learning under the Low Density Separation Assumption.
- Lee, D.-H. (2013). Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. ICML 2013 Workshop : Challenges in Representation Learning (WREPL).
- van Engelen, J. E. and Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning, 109(2):373–440.

Table: Characteristics of datasets used in our experiments